float circle(in vec2 _st, in float _radius){
vec2 dist = _st-vec2(0.5);
return 1.-smoothstep(_radius-(_radius*0.01),
_radius+(_radius*0.01),
dot(dist,dist)*4.0);
}
float box(in vec2 _st, in vec2 _size){
_size = vec2(0.5) - _size*0.5;
vec2 uv = smoothstep(_size,
_size+vec2(0.001),
_st);
uv *= smoothstep(_size,
_size+vec2(0.001),
vec2(1.0)-_st);
return uv.x*uv.y;
}
float cross(in vec2 _st, float _size){
return box(_st, vec2(_size,_size/4.)) +
box(_st, vec2(_size/4.,_size));
}
float lines(in vec2 pos, float b){
float scale = 10.0;
pos *= scale;
return smoothstep(0.0,
.5+b*.5,
abs((sin(pos.x*3.1415)+b*2.0))*.5);
}
//
float shape(vec2 st, float radius) {
st = vec2(0.5)-st;
float r = length(st)*2.0;
float a = atan(st.y,st.x);
float m = abs(mod(a+u_time*2.,3.14*2.)-3.14)/3.6;
float f = radius;
m += noise(st+u_time*0.1)*.5;
// a *= 1.+abs(atan(u_time*0.2))*.1;
// a *= 1.+noise(st+u_time*0.1)*0.1;
f += sin(a*50.)*noise(st+u_time*.2)*.1;
f += (sin(a*20.)*.1*pow(m,2.));
return 1.-smoothstep(f,f+0.007,r);
}
float shapeBorder(vec2 st, float radius, float width) {
return shape(st,radius)-shape(st,radius-width);
}
//
mat2 rotate2d(float _angle){
return mat2(cos(_angle),-sin(_angle),
sin(_angle),cos(_angle));
}
mat2 scale(vec2 _scale){
return mat2(_scale.x,0.0,
0.0,_scale.y);
}
vec2 tile(vec2 _st, float _zoom){
_st *= _zoom;
return fract(_st);
}
vec2 brickTile(vec2 _st, float _zoom){
_st *= _zoom;
// Here is where the offset is happening
_st.x += step(1., mod(_st.y,2.0)) * 0.5;
return fract(_st);
}
vec2 truchetPattern(in vec2 _st, in float _index){
_index = fract(((_index-0.5)*2.0));
if (_index > 0.75) {
_st = vec2(1.0) - _st;
} else if (_index > 0.5) {
_st = vec2(1.0-_st.x,_st.y);
} else if (_index > 0.25) {
_st = 1.0-vec2(1.0-_st.x,_st.y);
}
return _st;
}
float random (vec2 st) {
return fract(sin(dot(st.xy,
vec2(12.9898,78.233)))*
43758.5453123);
}
// Based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 _st) {
vec2 i = floor(_st);
vec2 f = fract(_st);
// Four corners in 2D of a tile
float a = random(i);
float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));
vec2 u = f * f * (3.0 - 2.0 * f);
return mix(a, b, u.x) +
(c - a)* u.y * (1.0 - u.x) +
(d - b) * u.x * u.y;
}
vec2 random2(vec2 st){
st = vec2( dot(st,vec2(127.1,311.7)),
dot(st,vec2(269.5,183.3)) );
return -1.0 + 2.0*fract(sin(st)*43758.5453123);
}
float noise (in vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
// Four corners in 2D of a tile
float a = random(i);
float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));
// Smooth Interpolation
// Cubic Hermine Curve. Same as SmoothStep()
vec2 u = f*f*(3.0-2.0*f);
// u = smoothstep(0.,1.,f);
// Mix 4 coorners percentages
return mix(a, b, u.x) +
(c - a)* u.y * (1.0 - u.x) +
(d - b) * u.x * u.y;
}
#define NUM_OCTAVES 5
float fbm ( in vec2 _st) {
float v = 0.0;
float a = 0.5;
vec2 shift = vec2(100.0);
// Rotate to reduce axial bias
mat2 rot = mat2(cos(0.5), sin(0.5),
-sin(0.5), cos(0.50));
for (int i = 0; i < NUM_OCTAVES; ++i) {
v += a * noise(_st);
_st = rot * _st * 2.0 + shift;
a *= 0.5;
}
return v;
}
float plot(vec2 p, float v){
return smoothstep( v-0.02, v, p.y) -
smoothstep( v, v+0.02, p.y);
}